Copied to
clipboard

?

G = C10×C42⋊C2order 320 = 26·5

Direct product of C10 and C42⋊C2

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C42⋊C2, (C2×C42)⋊3C10, (C22×C20)⋊32C4, (C4×C20)⋊48C22, (C22×C4)⋊10C20, C4213(C2×C10), (C23×C4).9C10, C2.3(C23×C20), (C23×C20).24C2, C4.30(C22×C20), C23.34(C2×C20), C24.29(C2×C10), C10.76(C23×C4), (C2×C20).706C23, C20.247(C22×C4), (C2×C10).334C24, C22.7(C23×C10), (C23×C10).89C22, C22.25(C22×C20), C23.67(C22×C10), (C22×C20).609C22, (C22×C10).467C23, (C2×C4×C20)⋊5C2, (C10×C4⋊C4)⋊51C2, (C2×C4⋊C4)⋊24C10, C4⋊C418(C2×C10), (C2×C20)⋊53(C2×C4), (C2×C4)⋊11(C2×C20), C2.1(C10×C4○D4), (C5×C4⋊C4)⋊75C22, C10.220(C2×C4○D4), C22.26(C5×C4○D4), C22⋊C4.27(C2×C10), (C10×C22⋊C4).35C2, (C2×C22⋊C4).15C10, (C22×C4).97(C2×C10), (C2×C10).226(C4○D4), (C2×C10).265(C22×C4), (C2×C4).133(C22×C10), (C22×C10).188(C2×C4), (C5×C22⋊C4).158C22, SmallGroup(320,1516)

Series: Derived Chief Lower central Upper central

C1C2 — C10×C42⋊C2
C1C2C22C2×C10C2×C20C5×C22⋊C4C5×C42⋊C2 — C10×C42⋊C2
C1C2 — C10×C42⋊C2
C1C22×C20 — C10×C42⋊C2

Subgroups: 402 in 330 conjugacy classes, 258 normal (18 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×8], C4 [×8], C22, C22 [×10], C22 [×12], C5, C2×C4 [×36], C2×C4 [×8], C23, C23 [×6], C23 [×4], C10, C10 [×6], C10 [×4], C42 [×8], C22⋊C4 [×8], C4⋊C4 [×8], C22×C4 [×2], C22×C4 [×16], C24, C20 [×8], C20 [×8], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C42 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C42⋊C2 [×8], C23×C4, C2×C20 [×36], C2×C20 [×8], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C42⋊C2, C4×C20 [×8], C5×C22⋊C4 [×8], C5×C4⋊C4 [×8], C22×C20 [×2], C22×C20 [×16], C23×C10, C2×C4×C20 [×2], C10×C22⋊C4 [×2], C10×C4⋊C4 [×2], C5×C42⋊C2 [×8], C23×C20, C10×C42⋊C2

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], C23 [×15], C10 [×15], C22×C4 [×14], C4○D4 [×4], C24, C20 [×8], C2×C10 [×35], C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], C2×C20 [×28], C22×C10 [×15], C2×C42⋊C2, C22×C20 [×14], C5×C4○D4 [×4], C23×C10, C5×C42⋊C2 [×4], C23×C20, C10×C4○D4 [×2], C10×C42⋊C2

Generators and relations
 G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, cd=dc >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 131 54 147)(2 132 55 148)(3 133 56 149)(4 134 57 150)(5 135 58 141)(6 136 59 142)(7 137 60 143)(8 138 51 144)(9 139 52 145)(10 140 53 146)(11 78 21 82)(12 79 22 83)(13 80 23 84)(14 71 24 85)(15 72 25 86)(16 73 26 87)(17 74 27 88)(18 75 28 89)(19 76 29 90)(20 77 30 81)(31 103 160 97)(32 104 151 98)(33 105 152 99)(34 106 153 100)(35 107 154 91)(36 108 155 92)(37 109 156 93)(38 110 157 94)(39 101 158 95)(40 102 159 96)(41 126 65 112)(42 127 66 113)(43 128 67 114)(44 129 68 115)(45 130 69 116)(46 121 70 117)(47 122 61 118)(48 123 62 119)(49 124 63 120)(50 125 64 111)
(1 79 48 107)(2 80 49 108)(3 71 50 109)(4 72 41 110)(5 73 42 101)(6 74 43 102)(7 75 44 103)(8 76 45 104)(9 77 46 105)(10 78 47 106)(11 118 34 146)(12 119 35 147)(13 120 36 148)(14 111 37 149)(15 112 38 150)(16 113 39 141)(17 114 40 142)(18 115 31 143)(19 116 32 144)(20 117 33 145)(21 122 153 140)(22 123 154 131)(23 124 155 132)(24 125 156 133)(25 126 157 134)(26 127 158 135)(27 128 159 136)(28 129 160 137)(29 130 151 138)(30 121 152 139)(51 90 69 98)(52 81 70 99)(53 82 61 100)(54 83 62 91)(55 84 63 92)(56 85 64 93)(57 86 65 94)(58 87 66 95)(59 88 67 96)(60 89 68 97)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 159)(18 160)(19 151)(20 152)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 31)(29 32)(30 33)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 61)(48 62)(49 63)(50 64)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(111 133)(112 134)(113 135)(114 136)(115 137)(116 138)(117 139)(118 140)(119 131)(120 132)(121 145)(122 146)(123 147)(124 148)(125 149)(126 150)(127 141)(128 142)(129 143)(130 144)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131,54,147)(2,132,55,148)(3,133,56,149)(4,134,57,150)(5,135,58,141)(6,136,59,142)(7,137,60,143)(8,138,51,144)(9,139,52,145)(10,140,53,146)(11,78,21,82)(12,79,22,83)(13,80,23,84)(14,71,24,85)(15,72,25,86)(16,73,26,87)(17,74,27,88)(18,75,28,89)(19,76,29,90)(20,77,30,81)(31,103,160,97)(32,104,151,98)(33,105,152,99)(34,106,153,100)(35,107,154,91)(36,108,155,92)(37,109,156,93)(38,110,157,94)(39,101,158,95)(40,102,159,96)(41,126,65,112)(42,127,66,113)(43,128,67,114)(44,129,68,115)(45,130,69,116)(46,121,70,117)(47,122,61,118)(48,123,62,119)(49,124,63,120)(50,125,64,111), (1,79,48,107)(2,80,49,108)(3,71,50,109)(4,72,41,110)(5,73,42,101)(6,74,43,102)(7,75,44,103)(8,76,45,104)(9,77,46,105)(10,78,47,106)(11,118,34,146)(12,119,35,147)(13,120,36,148)(14,111,37,149)(15,112,38,150)(16,113,39,141)(17,114,40,142)(18,115,31,143)(19,116,32,144)(20,117,33,145)(21,122,153,140)(22,123,154,131)(23,124,155,132)(24,125,156,133)(25,126,157,134)(26,127,158,135)(27,128,159,136)(28,129,160,137)(29,130,151,138)(30,121,152,139)(51,90,69,98)(52,81,70,99)(53,82,61,100)(54,83,62,91)(55,84,63,92)(56,85,64,93)(57,86,65,94)(58,87,66,95)(59,88,67,96)(60,89,68,97), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,151)(20,152)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,131)(120,132)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,141)(128,142)(129,143)(130,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131,54,147)(2,132,55,148)(3,133,56,149)(4,134,57,150)(5,135,58,141)(6,136,59,142)(7,137,60,143)(8,138,51,144)(9,139,52,145)(10,140,53,146)(11,78,21,82)(12,79,22,83)(13,80,23,84)(14,71,24,85)(15,72,25,86)(16,73,26,87)(17,74,27,88)(18,75,28,89)(19,76,29,90)(20,77,30,81)(31,103,160,97)(32,104,151,98)(33,105,152,99)(34,106,153,100)(35,107,154,91)(36,108,155,92)(37,109,156,93)(38,110,157,94)(39,101,158,95)(40,102,159,96)(41,126,65,112)(42,127,66,113)(43,128,67,114)(44,129,68,115)(45,130,69,116)(46,121,70,117)(47,122,61,118)(48,123,62,119)(49,124,63,120)(50,125,64,111), (1,79,48,107)(2,80,49,108)(3,71,50,109)(4,72,41,110)(5,73,42,101)(6,74,43,102)(7,75,44,103)(8,76,45,104)(9,77,46,105)(10,78,47,106)(11,118,34,146)(12,119,35,147)(13,120,36,148)(14,111,37,149)(15,112,38,150)(16,113,39,141)(17,114,40,142)(18,115,31,143)(19,116,32,144)(20,117,33,145)(21,122,153,140)(22,123,154,131)(23,124,155,132)(24,125,156,133)(25,126,157,134)(26,127,158,135)(27,128,159,136)(28,129,160,137)(29,130,151,138)(30,121,152,139)(51,90,69,98)(52,81,70,99)(53,82,61,100)(54,83,62,91)(55,84,63,92)(56,85,64,93)(57,86,65,94)(58,87,66,95)(59,88,67,96)(60,89,68,97), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,151)(20,152)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,131)(120,132)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,141)(128,142)(129,143)(130,144) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,131,54,147),(2,132,55,148),(3,133,56,149),(4,134,57,150),(5,135,58,141),(6,136,59,142),(7,137,60,143),(8,138,51,144),(9,139,52,145),(10,140,53,146),(11,78,21,82),(12,79,22,83),(13,80,23,84),(14,71,24,85),(15,72,25,86),(16,73,26,87),(17,74,27,88),(18,75,28,89),(19,76,29,90),(20,77,30,81),(31,103,160,97),(32,104,151,98),(33,105,152,99),(34,106,153,100),(35,107,154,91),(36,108,155,92),(37,109,156,93),(38,110,157,94),(39,101,158,95),(40,102,159,96),(41,126,65,112),(42,127,66,113),(43,128,67,114),(44,129,68,115),(45,130,69,116),(46,121,70,117),(47,122,61,118),(48,123,62,119),(49,124,63,120),(50,125,64,111)], [(1,79,48,107),(2,80,49,108),(3,71,50,109),(4,72,41,110),(5,73,42,101),(6,74,43,102),(7,75,44,103),(8,76,45,104),(9,77,46,105),(10,78,47,106),(11,118,34,146),(12,119,35,147),(13,120,36,148),(14,111,37,149),(15,112,38,150),(16,113,39,141),(17,114,40,142),(18,115,31,143),(19,116,32,144),(20,117,33,145),(21,122,153,140),(22,123,154,131),(23,124,155,132),(24,125,156,133),(25,126,157,134),(26,127,158,135),(27,128,159,136),(28,129,160,137),(29,130,151,138),(30,121,152,139),(51,90,69,98),(52,81,70,99),(53,82,61,100),(54,83,62,91),(55,84,63,92),(56,85,64,93),(57,86,65,94),(58,87,66,95),(59,88,67,96),(60,89,68,97)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,159),(18,160),(19,151),(20,152),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,31),(29,32),(30,33),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,61),(48,62),(49,63),(50,64),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(111,133),(112,134),(113,135),(114,136),(115,137),(116,138),(117,139),(118,140),(119,131),(120,132),(121,145),(122,146),(123,147),(124,148),(125,149),(126,150),(127,141),(128,142),(129,143),(130,144)])

Matrix representation G ⊆ GL4(𝔽41) generated by

40000
04000
00160
00016
,
32000
0100
00040
00400
,
40000
04000
00320
00032
,
1000
04000
0010
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,16,0,0,0,0,16],[32,0,0,0,0,1,0,0,0,0,0,40,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,32,0,0,0,0,32],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;

200 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AB5A5B5C5D10A···10AB10AC···10AR20A···20AF20AG···20DH
order12···222224···44···4555510···1010···1020···2020···20
size11···122221···12···211111···12···21···12···2

200 irreducible representations

dim1111111111111122
type++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20C4○D4C5×C4○D4
kernelC10×C42⋊C2C2×C4×C20C10×C22⋊C4C10×C4⋊C4C5×C42⋊C2C23×C20C22×C20C2×C42⋊C2C2×C42C2×C22⋊C4C2×C4⋊C4C42⋊C2C23×C4C22×C4C2×C10C22
# reps12228116488832464832

In GAP, Magma, Sage, TeX

C_{10}\times C_4^2\rtimes C_2
% in TeX

G:=Group("C10xC4^2:C2");
// GroupNames label

G:=SmallGroup(320,1516);
// by ID

G=gap.SmallGroup(320,1516);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,436]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽